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Coil-to-stretch transition, kink formation, and efficient barrier crossing of a flexible chain

SeungKyun Lee and Wokyung Sung
Department of Physics and Institute of Polymer Research, Pohang University of Science and Technology, Pohang 790-784, Sou

~Received 14 June 2000; published 26 January 2001!

We study the thermally activated barrier crossing of a linear, flexible chain~polymer! under the Kramers
bistable potential using the multidimensional barrier crossing theory and the functional integral method. We
find that above a critical chain length or below a critical chain spring constant the chain at the barrier top
undergoes coil-to-stretch transition, resulting in the formation of a kink. The emergence of the kink mode
renormalizes the activation energy to a smaller value so as to facilitate the barrier crossing. In addition to this,
the larger fluctuation of the polymer in the unstable region of the potential~compared to that in the confining
well! further reduces the free energy barrier, and greatly enhances the crossing rate of a flexible chain. We
calculate analytically the crossing rates and confirm the results by numerical simulations. The polymer in
barrier crossing thus reveals its conformational flexibility and adjustment to external forces as characteristic
features of soft matter dynamics.

DOI: 10.1103/PhysRevE.63.021115 PACS number~s!: 05.40.2a, 61.41.1e, 82.20.Db, 87.15.He
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I. INTRODUCTION

The thermally activated barrier crossing is not only
fundamental importance in describing many practical pr
lems in physics, chemistry, and biology, but also instrum
tal in understanding stochastic paradigms such as stoch
resonance and thermal ratchets, which have attracted m
attention recently@1#. Since Kramers treatment of the barri
crossing dynamics of a Brownian particle interacting w
the environment, much progress has been made in this
@2# to study the barrier crossing rate of a single particle~or
degree of freedom! in various complex situations includin
those with memory effect@3#, nonequilibrium fluctuation@4#,
and quantum tunneling@5#. Recently, on the other hand
there has been much interest in the stochastic dynamic
systems consisting of more than one degree of freedom
outstanding example is the array-enhanced stochastic r
nance@6#. There, the optimal signal-to-noise ratio of the r
sponse of a typical element in an array of periodically forc
damped bistable oscillators is greatly enhanced when s
able coupling is introduced between neighboring oscillato
Other examples include the synchronization-like behavio
two coupled stochastic bistable systems@7# and directed
transport of two or more elastically coupled particles in
ratchet potential under nonequilibrium fluctuation@8,9#. A
main concern in these examples has been the effect o
coupling on the coherent dynamics of the whole system.

As interconnected, flexible systems as they are, polym
and membranes manifest interesting cooperative dynamic
biological relevance in certain noisy environments and ex
nal fields. In particular, the transport of polymers in inhom
geneous media has been widely studied with possible ap
cations to DNA/RNA manipulation, drug delivery, an
protein inclusion and penetration through cell membranes
recent years, the translocation of a long flexible polym
through a membrane pore has been a subject of active in
tigation, where it is important to understand the driving a
blocking mechanisms@10,11#. Slateret al. suggested an in
teresting ‘‘entropic ratchet’’ mechanism for a polymer mo
ing in a channel with an asymmetrically modulated cro
1063-651X/2001/63~2!/021115~10!/$15.00 63 0211
f
-
-
tic
ch

ld

of
n

so-

,
it-
s.
f

he

rs
of
r-
-
li-

In
r
s-

d

s

section@12#. Diffusion of polymers in random porous med
has also been much studied in connection with gel elec
phoresis@13#. Han et al. have reported a controlled exper
ment on the escape of a long trapped DNA chain throug
narrow pathway@14#. These studies showed that the entrop
effect coming from the conformational flexibility of poly
mers plays an important role in determining their dynami
properties, and revealed some remarkable effects of c
connectivity in the presence of external fields and envir
mental biases.

In this paper, we consider a thermally activated barr
crossing or the escape of a linear flexible chain~polymer!
over the barrier of a Kramers bistable potential~Fig. 1!. With
the chain being viewed as a coupled array ofN Brownian
particles~beads!, each subject to the potential, the problem
a generalization of the well known Kramers theory to ma
degrees of freedom. Although for a real polymer under
unstable potential, anharmonic segmental tension can be
voked for finite chain extensibility, here we only consider
chain with simple harmonic coupling between neighbori
beads~Rouse model!. Our model will be appropriate for a
situation where the barrier curvature is small on microsco
scales so that the extension of individual segments rem

FIG. 1. A linear chain ofN identical beads under bistable po
tentialU(x). The potential has local wells atx56j and a barrier at
x50.The dashed line indicates the metastable Kramers pote
considered in@15#.
©2001 The American Physical Society15-1
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small throughout the dynamics of the chain. In a rela
study, Park and Sung@15# considered a metastable Krame
potential varying on a length scale much larger than
polymer size, with one side falling to negative infini
~dashed line, Fig. 1!. There, a chain with harmonic couplin
can extend indefinitely at the barrier top whenN is suffi-
ciently large. Therefore, to overcome the difficulty, a latti
polymer model was used for numerical computations@15#.

Recently, Sebastian and Paul@16# considered a similar
problem of barrier crossing of a polymer in a double-w
potential in the opposite case, with the barrier width mu
smaller than the polymer contour length. In their solutio
part of the polymer is first activated over the barrier to fo
a kink or a kink/antikink pair~hairpin!, and then the entire
polymer translocates to the other side of the barrier by mo
ment of the kink~and/or antikink! along the contour. Be-
cause the kink or antikink is essentially a localized objec
the long-chain limit, the activation energy is independent
the chain length, and the crossing rates for polymers of
ferent lengths are determined by the kink diffusion tim
along the chain.

Motivated by polymer transport in mesoscopically
macroscopically modulating environments, we will consid
a Kramers potential with a barrier of large enough width t
the barrier crossing process is dominated by the activatio
the entire polymer over the barrier top, rather than by
motion of a preformed, localized kink. In this case, the ac
vation energy depends critically on the number of monom
N. In the short chain limit, the polymer will maintain it
free-space configuration of coiled form, since the poten
does not vary significantly over its radius of gyration. Th
the activation energy is proportional toN, and the crossing is
slowed down exponentially asN grows. But this cannot go
on indefinitely as we increaseN because at some point th
polymer is capable of undergoing conformational transit
to a stretched state to greatly lower the activation ene
Upon further increase ofN, the mode of translocation wil
eventually become that of kink diffusion as considered
@16#.

Our aim in this paper is to describe analytically the on
of this coil-to-stretch transition and its effect on the fre
energy barrier as well as the crossing rate. It is found t
beyond the transition, which can be tuned either by
length of the polymer or the coupling strength, the fi
Rouse mode gives rise to the kink formation, which lowe
the free-energy barrier to enhance the crossing rate. Also
large fluctuation occurring near the transition point is fou
to contribute significantly to the reduction of free-ener
barrier.

In Sec. II we define our model and the problem mo
precisely. Using the functional integral method for evalu
ing the free energy, we calculate the chain crossing rate f
bistable potential and harmonic coupling in Sec. III. T
main theoretical base is the multidimensional Kramers r
theory applied to the dynamics in chain configuration spa
Analytical expressions of the rate are obtained in range
potential and chain parameters which cannot only be rele
to polymer transport in potentials varying on mesoscopic
macroscopic scales, but also show dominant effects of c
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flexibility and the associated conformational transition th
we seek to find in this work. Results of our numerical sim
lations are presented in Sec. IV, and Sec. V summarizes
paper.

II. DEFINITION OF THE PROBLEM
AND MULTIDIMENSIONAL
KRAMERS RATE THEORY

Consider a linear chain ofN identical beads in three
dimensional~3D! space which is initially confined in one
well of a one-dimensional bistable potentialU(x)5
2(vB

2/2)x211/4(vB
2/j2)x4 ~Fig. 1!. The potentialU(x) has

two local wells atx56j separated by a barrier centered
x50. The barrier has the heightUB5U(0)2U(6j)
5vB

2j2/4 and the width 2j. The vB
2 and v0

2[2vB
2 are the

curvatures at potential maximum and minimum. Our qu
tion is: what is the rate or inverse mean time of the therma
activated crossing of the whole chain from one well to t
other? To simplify the problem, we confine ourselves to
case where the crossing dynamics is much slower than
internal chain relaxation so that multidimensional Krame
theory is valid as described below. For the interaction
tween the beads, we consider only the nearest neighbor
pling characterized by the potentialV(Dr )5V(urn112rnu),
n51,2, . . . ,N21, wherern , n51,2, . . . ,N denotes the po-
sition of thenth bead. For simplicity, we neglect other inte
bead interactions that give rise to excluded volume effect
bending stiffness.

In many cases, the simple bead spring model for
chain,V(Dr )5 1

2 K(Dr )2, K53kBT/ l 2 where l is the mean
free-space segmental length, gives a satisfactory descrip
of the conformation and dynamics of a real polymer. Stric
speaking, the segmental tension of a real polymer in the p
ence of an external potential becomes nonlinear@i.e., anhar-
monic terms inV(Dr ) become important# when the segmen
tal length exceeds some tolerance range, sayz. When the
potential has a barrier of width 2j and a curvature at the to
given by vB

2 , we can show that in thermal equilibrium th
segment of a harmonic chain will be extended at most
Dx;jAvB

2/K @17# in the direction of potential variation
Hence we get the following self-consistent condition for t
harmonic description of the coupling function:

z*jAvB
2

K
~1!

wherez is a chain parameter describing the range of segm
tal extension beyond which the Hooke’s law breaks dow
We may assume in good approximation that the chain in f
space is harmonic, that is,z is sufficiently larger than the
free-space mean segmental length,z.AkBT/K. Then the
above condition is guaranteed ifkBT*vB

2j2, which means
that the barrier height is, at most, of the order ofkBT per
segment. In what follows, we consider the parameter reg
where Eq.~1! is met, thus neglecting anharmonic terms
V(Dr ); V(Dr )5 1

2 K(Dr )2.
Now the total energy of the chain under potentialU(x) is
5-2
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F~$rn%!5 (
n51

N

U~xn!1 (
n51

N21
1

2
Kurn112rnu2.

If we work in the overdamped limit where the bead’s m
mentum relaxation has occurred already in the relevant t
scale, we can regard the escape process as a Brownian
tion occurring in the 3N-dimensional configuration space o
the chain where the above energy function is defined. No
that the energy function does not involve coupling betwe
different Cartesian coordinates of$rn%5$xn ,yn ,zn%, we can
reduce the problem further by separating the dynamics a
the x direction governed by the energy function

F~$xn%!5 (
n51

N

U~xn!1 (
n51

N21
1

2
K~xn112xn!2. ~2!

The probability distributionP($xn%;t), which represents the
probability per unit volume~in $xn% space! of the chain to
have configuration$xn% at time t, satisfies the following
Fokker-Planck equation:

]P~$xn%;t !

]t
5D(

l

]

]xl
F ]

]xl
1b

]

]xl
F~$xn%!GP~$xn%;t !,

~3!

where D is the segmental diffusion coefficient andb
5(kBT)21. In they andz directions the chain simply show
the free-space Rouse chain dynamics.

The configuration space$xn% contains two stable point
that correspond to the chains localized atx51j or x5

2j. These two states, which we will denote by$x̄n%1 and

$x̄n%2 , are separated by a higher-energy region or barrie
$xn% space. Our problem is to find the rate at which o
system ~chain! starts from its initial confinement aroun

$x̄n%2 and escapes over the barrier to reach the well aro

$x̄n%1 . The relevant activation energy of this process is
lowest threshold energy in all the paths connecting the st

$x̄n%2 and$x̄n%1 . Geometrically, it is determined by the pa
crossing the saddle point$x̄n%B in the configuration space
which is a stationary point with respect to a variation (d)
satisfying

dFu$x̄n%B
50

and involving only one unstable mode along which the ‘‘r
action flux’’ runs from$x̄n%2 to $x̄n%1 . In the next section
we will see that this ‘‘transition state’’$x̄n%B corresponds to
either a localized configuration of$xn% aroundx50, or a
kink configuration representing a stretched chain arounx
50, depending on the chain and potential parameters.

In any case, let us denote the activation energy asDF

5F($x̄n%B)2F($x̄n%2). If DF@kBT, the crossing time is
much longer than any internal chain relaxation time, an
can be calculated from an approximate, quasistationary s
tion to Eq.~3!. The rate is obtained by dividing the reactio
flux j across the saddle point$x̄n%B by the total probability
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population confined in the well at$x̄n%2 . This is the famous
Kramers rate theory in the overdamped limit formulated
Langer@18#. The resulting rateR is written as

R5
vB

2pg

ZB

Z0
A2pkBTe2bDF. ~4!

Z0 andZB are, respectively, the partition functions associa
with the fluctuation of the system near the initial stable po

$x̄n%2 and near the saddle point$x̄n%B . Explicitly,

Z05E
well

dN$xn% e2b[F($xn%)2F($x̄n%2)] , ~5!

ZB5E saddle
'(unstable mode)

dN21$xn% e2b[F($xn%)2F($x̄n%B)] . ~6!

The integral in Eq.~6! is over the hypersurface which con
tains the saddle point and is normal to the unstable mo
The rate equation~4! can also be written as

R5
v0vB

2pg
e2bDF, ~7!

whereDF is the free-energy barrier defined by

DF[DF2kBT ln~ZB /Z08!, ~8!

whereZ08 is the partition function at the well with the lowes
mode contribution omitted;Z08[Z0 /(A2pkBTv0

21). DF
consists of both the activation energyDF and the difference
in the free energy of fluctuation around$x̄n%B and$x̄n%2 .

Note that the above rate formalism can be applied to
problem if we identify a well defined transition state of th
chain represented by a localized saddle point in the confi
ration space. This can be seen by noting that the expres
Eq. ~4! gives the rate in terms of only local properties of t
saddle and the metastable points, without showing dep
dence on, for example, the distance between these poin
$xn% space. One example with such dependence is when
chain contour length is much larger than the width of t
barrier so that the chain translocation from one well to
other occurs via movement along the chain contour of
extended portion~kink! of the chain bridging the two wells
while the remaining majority of segments reside in one w
or another@16#. In the following sections, we will concen
trate on the case of a relatively wide barrier and a small ch
for which the rate expression Eq.~4! obtained by the multi-
dimensionl Kramers theory is valid.

III. CALCULATION OF THE RATE

Consider the quartic double-well potentialU(x) in Fig. 1.
If the number of beadsN is large and the attractive couplin
among the beads is strong so that any two neighboring be
always remain close to each other in the length scale o
which U(x) varies, we can treat theN-bead chain as a con
tinuous string represented by a path,$xn%→$x(s5n/N), 0
<s<1%. In this limit, via transformation(n51

N →N*0
1ds and
5-3
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uxn112xnu→ 1
N

uẋ(s)u, we get the energy functional

F5F@x~s!#5NE
0

1

dsL@x~s!,ẋ~s!#, ~9!

L@x~s!,ẋ~s!#52
vB

2

2
x~s!21

1

4

vB
2

j2
x~s!41

1

2

K

N2
ẋ~s!2,

where ẋ[dx/ds. The free-end boundary condition, cons
tent with the bead-spring model@19#, is expressed asdx/ds
50 at s50,1. In order to perform the functional integratio
for the partition functions@Eqs. ~5,6!#, we need to identify
the stationary solution to Eq.~9! around which the fluctua
tion is to be evaluated.

The stationary path~s! is~are! obtained from the Euler-
Lagrange equation@20#

]L
]x

5
d

ds

]L
] ẋ

, 0,s,1,

which yields the differential equation for the stationary pa
x̄(s),

K

N2
ẍ̄~s!52vB

2 x̄1
vB

2

j2
x̄3, 0,s,1, ~10!

with boundary conditionẋ̄(0)5 ẋ̄(1)50. x̄(s) can be re-
garded as the trajectory of a classical particle moving in
inverted potential2U(x), with zero initial and final ‘‘ve-
locities.’’

There are three trivial solutions consistent with the bou
ary condition:

x̄~s![0,6j. ~11!

It is obvious that the solutionsx̄(s)[6j, corresponding to
the chains confined in either well, are stable. We will assu
that the chain is initially confined in the left well nearx5
2j, so that the metastable configuration is denoted
x̄0(s)5 x̄2(s)[2j. We can show that Eq.~11! is the only
solution whenN2vB

2,Kp2. Thus in this parameter regim

the homogeneous configurationx̄(s)[0 is the only saddle
point ~in $xn% space! bridging the two stable statesx̄(s)[
6j. We will denote such transition statex̄B(s).

To assess the effects of the fluctuation and the sa
point structure of the chain energy functional we investig
the eigenvalue spectrum of the operator of second-order
pansion ofF at the stationary points. This operator is defin
by the expansion

F@ x̄1dx#5F@ x̄#1
N

2E0

1

dsdx~s!Fdx~s!1O@~dx!4#,

~12!

and corresponds to the differential operator
02111
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F↔U9@ x̄~s!#2
K

N2

d2

ds2
~13!

defined in the function space$u(s), 0<s<1, u̇(0)5u̇(1)
50%. The operator2(K/N2)(d2/ds2) has the eigenvalue
spectrum (K/N2)p2 j 2, j 50,1, . . . ,N21, associated with
the eigenfunctions~normalized to unity! known as the Rouse
modes,

uj~s!5HA2

1 J cos~p js!,
j 51,2, . . . ,N21

j 50
.

Hence atx̄0(s)[2j, F has the eigenvaluesl j
05U9(2j)

1(K/N2)p2 j 2, j 50,1, . . . ,N21, which are all positive,
confirming that these solutions correspond to stable confi
rations. Note thatU9(2j)52vB

25v0
2 . At x̄B(s)[0, the ei-

genvalues of F are l j
B52vB

21(K/N2)p2 j 2, j
50,1, . . . ,N21. Here the smallest eigenvalue is negati
(52vB

2). The next eigenvalue, associated with the fi
Rouse modeu1(s)5A2 cos(ps), is positive as long as

vB
2,

Kp2

N2
~14!

~coiled-state barrier crossing regime!. Thus in this case the
fixed pointx̄B(s)[0 is indeed the saddle point with only on
unstable eigenmodeu0(s) and constitutes the transition sta
of the chain dynamics bridging the two stable configuratio
Since the statex̄B(s)[0 corresponds to a compact~coiled!
chain conformation at the barrier top and the single unsta
modeu0(s)[1 represents uniform translation in thex direc-
tion of the whole chain, we conclude that in the parame
regime given by Eq.~14! ~except whenvB

2'Kp2/N2, where
a large fluctuation will occur!, the chain crosses the barrier
a compact, coiled form.

A. The crossing rate below the coil-to-stretch transition

Let us calculateR in this coiled-state barrier crossin
regime. The net barrier heightDF is the difference between
the energies of the two stationary statesx̄B and x̄0:

DF5F@ x̄B#2F@ x̄0#5NUB . ~15!

The partition functions accounting for the free energies
fluctuation at the well and saddle are calculated from
functional integrations@comparable to the discrete version
Eqs.~5! and ~6!#,

Z05E
well

D@dx~s!#e2b(F[ x̄01dx] 2F[ x̄0]) ,

ZB5E saddle
'(unstable mode)

D@dx~s!#e2b(F[ x̄B1dx] 2F[ x̄B]) .
5-4
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For the integrals over fluctuationdx(s), consider the trans
formation

dx~s!5 (
j 50

N21

Xjuj~s! ~16!

in terms of the eigenfunctionsuj (s) of the operatorF. Up to
second order indx ~harmonic expansion!,

F@ x̄1dx#2F@ x̄#5
N

2 (
j 50

N21

l jXj
2 , ~17!

with l j representing eitherl j
0 or l j

B ~and x̄ representingx̄0

or x̄B). It turns out that the proper change of integrati
measure in transforming variables fromdx(s) to $Xj% reads

E D@dx~s!#→E d~ANX0!•••d~ANXN21!.

Combining these we get, within the harmonic approxim
tion for the variation inF,

Z05~A2pkBT !N~l0
0
•••lN21

0 !21/2,

ZB5~A2pkBT !N21~l1
B
•••lN21

B !21/2,

and finally from Eq.~4!,

R5
vB

2pg

~l0
0
•••lN21

0 !1/2

~l1
B
•••lN21

B !1/2
e2bNUB

5
vBv0

2pg )
j 51

N21 S v0
21

Kp2 j 2

N2 D 1/2

S 2vB
21

Kp2 j 2

N2 D 1/2e2bNUB

'
vBv0

2pg S vB
2

v0
2D 1/4S sinh~NAv0

2/K !

sin~NAvB
2/K !

D 1/2

e2bNUB, ~18!

for 2vB
21 (Kp2/N2).0. The last approximation holds fo

N@1. In the strong coupling limitK→`, the rate becomes
R(K→`)→(vBv0/2pg)e2bNUB[R0 . R0 is the rate ex-
pected when theN-bead chain acts like a single globul
collapsed by infinitely large tension@15#. As the chain attains
flexibility by decreasingK, the rate increases. For all rang
of parameters satisfying the condition2vB

21 (Kp2/N2)
.0, the activation energy barrier itself remains the sam
F@ x̄B#2F@ x̄0#5NUB , and the effect of flexibility is wholly
contained in the prefactor of the rate, which represents
effect of chain fluctuation near the saddle and well confi
rations. For a fixedK, the rateR5R(N) is also enhanced
with increasing N compared to its globular-chain limit
R0(N) by the factor

R/R05S vB
2

v0
2D 1/4S sinh~NAv0

2/K !

sin~NAvB
2/K !

D 1/2

.1, ~19!
02111
-

:

e
-

increasing withN, while 2vB
21(Kp2/N2).0.

A singular feature of the above rate expression obtai
by harmonic approximation ofdF is that it diverges asl1

B

52vB
21(Kp2/N2) goes to zero: R@2vB

21(Kp2/N2)
→0#→`. We can think of (l1

B)1/2 as the frequency of the
first internal~Rouse! mode of a harmonic chain renormalize
at the barrier top with curvaturevB

2 ; when the intrinsic mode
eigenvalue (Kp2/N2) matches the external force consta
vB

2 , l1
B vanishes to allow infinite fluctuation of the chain

This causes the free energy of the chain at the barrier to
decrease indefinitely, and the rate apparently diverges.
singularity is an artifact of the harmonic approximatio
where the quartic term of the potential is neglected, i.e.,
potential is treated asU(x)52(vB

2/2)x2 .
The singularity inR can be removed by including highe

order~anharmonic! terms ofXj ’s in calculation ofZB . Since
the fluctuation along thej 50 mode does not contribute t
ZB , insertingdx(s)5( j 51

N21Xjuj (s) into dFB[F@ x̄B1dx#

2F@ x̄B#5F@dx#, we get the relevant anharmonicity corre
tion to dFB :

dFB5
N

2 (
j 51

N21

l j
BXj

21
3

8
NvB

2 1

j2
X1

4. ~20!

Now with the corrected expression Eq.~20!, the barrier par-
tition function becomes

ZB5E d~ANX1!e2b[(N/2)l1
BX1

2
1(3/8)NvB

2(1/j2)X1
4]

3E d~ANX2!•••d~ANXN21!e2b(N/2)(
j 52

N21

l j
BXj

2

5~A2pkBT !N21~l1
B
•••lN21

B !21/2f S e

e*
D ,

where

f ~a!5A a

2pE2`

`

dQ e2(a/2)Q22(3/8)Q4
,

e[l1
B/vB

25211
Kp2

vB
2N2

, ~21!

and

e* [
1

j
A kBT

NvB
2
. ~22!

The e is the fractional difference between the first Rou
mode engenvalue (Kp2/N2) and the barrier curvature (vB

2),
or is proportional to the fractional difference between t
polymer kinetic energy and potential energy at the bar
5-5
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@15#. In the following we will usee as a small paramete
describing the coil-to-stretch transition. Thef (a) goes to
unity for a@1, and is proportional toAa}Al1

B for a!1.
Hence thee* represents the value ofe below which the
anharmonicity correction to the rate becomes importa
Since we are considering the case of~total barrier height!
5(1/4)NvB

2j2@kBT in order for the Kramers rate theory t
be valid, we can saye* !1. The above expression ofZB has
no singularity asl1

B→0, and reduces to the result of secon
order calculation whene@e* .

The rate now can be written

R5Rhf S e

e*
D , ~23!

whereRh represents the rate expression equation~18! calcu-
lated with the harmonic expansion ofdFB .

B. The crossing rate above the coil-to-stretch transition

Now let us see what happens immediately above the c
to-stretch transition. Sincel1

B ande tend to be negative, no
only the modeu0(s) but alsou1(s) tend to be unstable at th
barrier top. This signals the emergence of a new saddle p
configurationx̄B(s) with smaller energy and only one un
stable mode. Indeed, we find a nontrivial solution to Eq.~10!
centered atx50 with the free-end boundary condition. Th
solution corresponds to a stretched chain configuration
versing the barrier top (x50) only once ats5 1

2 . This is
analogous to the kink, or one-instanton, solution inf4-field
theory. Thee50, therefore, marks the conformational tra
sition that we call coil-to-stretch transition. For smallueu
5ul1

B/vB
2 u, we can find the solution perturbatively by inse

ing x̄(s)5 x̄B(s)5( j 51
N21Xjuj (s) to Eq. ~10!. By multiplying

each side of the resulting equation byuj (s) and integrating
over 0<s<1, we get coupled equations relating coefficien
X1 ,X2 , . . . ,XN21. We find that asueu52e grows from
zero, X1 grows asX1;ueu1/2, while all other coefficients
scale asXj ( j >2);ueu3/2 or smaller. Hence forueu!1, we
can well approximate the solutionx̄B(s) by the first cosine
mode

x̄B~s!'X1u1~s!5X1A2 cos~ps!, ~24!

X1 beingX15jA2ueu/3.
Now the corresponding activation energy is calculated

be

DF5F@ x̄B~s!#2F@ x̄0#5NUB2
1

6
NvB

2j2e2. ~25!

This represents the decrease in activation energy due to
chain adaptability to external forcing, that is, the ability
the chain to make conformational transition to an energ
cally more favorable, stretched state at the barrier. For la
ueu, we can calculate the saddle point configuration and
activation energy by numerically solving Eq.~10!. Figure 2
shows the resulting reduction in activation energyDF as
02111
t.
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functions ofN and K. Note that the activation energy doe
not depend onN at largeN because of deformation~stretch-
ing! of the chain over the barrier. A similar effect has be
reported in an experiment on long DNA chains with differe
lengths escaping from entropic trapping@14#, and was also
mentioned in the recent theoretical work by Sebastian
Paul @16#. The eigenvalue spectrum of normal modes
x̄B(s) shows renormalization of the curvatureṽB

2 along the
unstable direction in the reaction path~which, in the previous
case ofe.0, has been the same as the geometrical curva
vB

2 of the real potential barrier!, and the restriction of fluc-
tuation near this point along stable directions. Again we c
calculate these eigenvalues perturbatively for smallueu.
From Eq.~13!, the second-order expansion operator atx̄B(s)
is

F↔2
K

N2

d2

ds2
2vB

214vB
2 ueucos2~ps!.

The last term is proportional to the small parameterueu and
makes a ‘‘perturbation potential’’ in the Schro¨dinger-type
operatorF. By applying the first-order perturbation theor
of quantum mechanics,

dl j
B5E

0

1

ds uj~s!24vB
2 ueucos2~ps!5H 2ueuvB

2 , j 50

3ueuvB
2 , j 51

2ueuvB
2 , j >2,

~26!

FIG. 2. Activation energy for a harmonic chain surmounti
quartic double-well potential barrier.~a! DF vs N for fixed tension
K of the harmonic chain.N5Nc5pAK/vB

2 corresponds to the coil-
to-stretch transition pointe50. ~b! DF vs K for fixed N. K5Kc

5vB
2N2/p2 corresponds to the transition point.
5-6
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we get the normal mode eigenvalues for the~slightly!
stretched chain:

~ṽB!2[ul0
Bu5~122ueu!vB

2 , ~27!

l1
B52vB

21
Kp2

N2
13ueuvB

252ueuvB
213ueuvB

2

52ueuvB
2.0,

l j >2
B 52vB

21
Kp2 j 2

N2
12ueuvB

2 .

Note that the first (j 51) mode is indeed stable, and all th
higher modes have larger eigenvalues~representing more re
stricted fluctuation! about the stretched statex̄B(s) of Eq.
~24! than they would have about the coiled statex̄(s)[0.

Now up to the second-order expansion fordFB as before,

ZB5~A2pkBT !N21
1

A2

3 )
j 51

N21 S 2vB
2~122ueu!1

Kp2 j 2

N2 D 21/2

,

from which the rate becomes

Rh52
ṽB

2pg
A2pkBT

ZB

Z0
e2bDF

'
ṽBv0

2pg
A2S ṽB

2

v0
2D 1/4S sinh~NAv0

2/K !

sin~NAṽB
2/K !

D 1/2

3e2b[NUB2NvB
2j2e2/6], ~28!

N@1, for e,0,ueu!1.

The multiplication factor 2 in the first line of the above equ
tion comes from the fact that there are two symmetric tr
sition states~with the same eigenmode structure! x̄B(s) and
x̄B(12s).

As in the casee.0, the aboveR diverges ate→20, due
to infinitely large fluctuation near the statex̄B(s) at the con-
formational transition point of the chain. We can again reg
larize this by inserting an anharmonic correction term in
the partition functionZB to get

R5RhgS e

e*
D , ~29!

whereRh is given by Eq.~28! and the functiong is defined
as

g~a!5
1

2
Auau

p
e2a2/6E

2`

`

dQ e2(a/2)Q22(3/8)Q4
. ~30!
02111
-
-

-

The rate expressions Eq.~23! and Eq.~29! match continu-
ously and nearly smoothly ate50 as shown in Figs. 3~a! and
3~b!. Figure 3~a! depicts the rate as a function ofK for fixed
N550 and Fig. 3~b! the rate with varyingN for fixed K
5200vB

2 . The stretched-state barrier crossing regimee,0
corresponds to either K,Kc5vB

2N2/p2 or N.Nc

5pAK/vB
2. These figures summarize the rate calculations

this section and suggest some important points worth not
First, the general trend toward large increase of the rate
e,0 ~compared toR0) is due to the drop in activation en
ergy after the conformational transition of the chain to
stretched state. The Boltzmann factor associated with
decreasingDF is plotted for comparison with dashed line
in both Figs. 3~a! and 3~b!. Second, the rate shows remar
able enhancement compared toR0 above the enhancemen
due to the substantial decrease in activation energy. Th
because the increased chain fluctuation gives rise to a re
tion in the free-energy barrier. Calculations based on
second-order expansion ofdFB overestimate this effect to
predict divergingRh . Our regularization scheme by anha
monicity correction seems to be satisfactory in describing
~nearly! smoothly varying rate across the transition point,
good agreement with the numerical simulation shown in S
IV.

FIG. 3. Rate of barrier crossing of a harmonic chain ove
double-well potential barrier. The potential parameters arev0

2/vB
2

52, bUB51, j/AkBT/vB
252. ~a! Rate vs K. N550, Kc

5vB
2N2/p25253vB

2 . ~b! Rate vsN. K is fixed atK/vB
25200 for

which Nc5pAK/vB
2544.4. R0 is the rate when the chain crosse

the barrier in a globular form.Rh is the rate calculated via second
order expansion ofdF, while R represents the first anharmonicit
correction toRh . All the rates are in units ofvBv0 /(2pg). The
dashed lines show the Boltzmann factor~in log scale! e2bDF asso-
ciated with the ‘‘bare’’ activation energy~without fluctuation ef-
fect! of the chain.
5-7
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Beyond the Smallueu Approximation.In the above, we
have calculated the rate below and just above the coil
stretch transition, i.e., the rate fore.0 and e,0 with ueu
!1. Evidently, the parameter regime that involves subst
tial chain extension over the barrier is important and of mu
relevance in experimental settings. A description of the c
with very largeN or very small tension will eventually re
quire theoretical approaches very different from those u
here, since we may not be able to identify a localized tr
sition state in the chain configuration space. For moderaN
and tension for which the approach in the preceding sect
remains valid, we can in principle always calculate the r
above the coil-to-stretch transition point (e,0) by numeri-
cally solving Eq.~10! for x̄B(s) and calculating the eigenva
ues of the operator in Eq.~13! @21#. Here we give genera
analytical predictions on the behavior ofR when a substan
tial extension of the chain at the barrier is involved in o
model. We discuss in terms of the effective free-energy b
rier DF defined in Eq.~8!.

With the model potential U(x)52(vB
2/2)x2

1 1
4 (vB

2/j2)x4, the saddle point configurationx̄B(s) above
the coil-to-stretch transition (e,0) will be contained in the
range2j, x̄B(s),j. For a harmonic chain, the fluctuatio
near this configuration is governed by the opera
F↔U9@ x̄B(s)#2(K/N2)(d2/ds2). Since at any pointx be-
tween2j andj the second derivativeU9(x) is smaller than
at x52j, U9(x),U9(2j)5v0

2, all the stable~positive!

eigenvalues ofF at x̄B(s) are smaller than those at the h
mogeneous configurationx̄0(s)[2j. That is,

l j
B,l j

0 , j 51, . . . ,N21.

This leads directly toZB.Z08 or, in view of Eq. ~8!, DF
,DF. The free-energy barrier is less than the activat
energy since the fluctuation is more restricted at the w
than at the barrier. This is generally true regardless of
exact shape of the double-well potentialU(x) as long as the
chain is harmonic.

Figure 4 shows schematically the expected behavio
DF ~dashed line! with increasingN. The differenceDF
2DF is large near the coil-to-stretch transition pointe50.

FIG. 4. Schematic plot of the free-energy barrierDF for a har-
monic chain surmounting a double-well potential barrier compa
to the activation energyDF.
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The gap may be reduced for largerN since more segment
will be likely to be confined in the well regions, but it re
mains positive throughout. Note that the rate itself will n
show a plateau as the barrier does (DF or DF) for very
largeN. This is because the unstable mode frequencyṽB is
also dependent onN and goes to zero for largeN ~the renor-
malization of barrier curvature!. Eventually, the escape dy
namics will show a crossover to the kink diffusion regim
where the chain crosses the barrier by diffusive motion of
kink obtained as a solution to Eq.~10!. The crossing time in
this case was reported to be proportional toN2 if the poten-
tial is symmetric@16#.

Our finding that the polymer crosses the barrier by for
ing a stretched portion~kink! at the barrier top is reminiscen
of the kink nucleation in the overdamped soliton theory th
has been widely studied in literature~for example,@22#!.
However, while in the kink nucleation problem one genera
considers an infinitely long string~or a string long enough to
contain many kinks as localized objects!, here we are inter-
ested in the case of a relatively short chain for which
barrier crossing process is dominated by the activation of
whole chain on the barrier top, rather than the kink diffusi
mechanism. The latter appears when the chain becomes
ficiently long, and our analysis has been focused on the t
sition between the short and long chain behaviors.
showed that at a critical chain lengthNc or at a critical cou-
pling constantKc , the saddle point structure of the proble
is modified, which dramatically changes the crossing ra
The fluctuation effect at such a transition point is crucial
determining the rate, and gives a divergent rate if we sim
adopt the harmonic approximation scheme as is done
many problems with fixed saddle point structure~including
the kink nucleation problem!. We identified the regime
where the harmonic expansion is insufficient, and calcula
the fluctuation effect in that regime by including the leadin
order anharmonic term in the expansion of the chain fluct
tion @see Eq.~20!#.

IV. NUMERICAL SIMULATION

Here we report the results of numerical simulation of t
barrier crossing dynamics of a harmonic chain under the
tential U(x)52(vB

2/2)x21 1
4 (vB

2/j2)x4. The parameter
range covered is not comprehensive, but the simulation s
ports the general conclusion of the preceding section
confirms the reliability of the analytical methods there. T
starting point is the Langevin equation governing the mot
of the x component of thenth bead@23#,

g
dxn

dt
5vB

2xn2
vB

2

j2
xn

31K~xn211xn1122xn!

1A2gkBTjn~ t !. ~31!

where g is the damping constant for one bead andjn(t)
represents the Gaussian white noise satisfying

^jn~ t !&50,

d

5-8
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^jn~ t !jm~ t8!&5dnmd~ t2t8!, n,m51,2, . . . ,N.

We integrate this equation using the Euler-Maruya
method with finite time intervalDt @24#. The random force
jn(t) at each time step is modeled by an independent Ga
ian random variable with zero mean and variances2

51/Dt. The finiteness of time interval is not important whe
it is much smaller than any macroscopic relaxation time.
require

Dt!
g

K
,

whereg/K is the single segment relaxation time, which
the shortest time scale of internal mode relaxation of
chain. The time and length scales of the problem are se
choosing the potential parameters asvB

25j251.5. We have
been assuming unit mass for each bead. In this unit,
choose g51 and kBT51. ~For comparison, the barrie
height for a single bead isvB

2j2/450.5625.! At t50, $xn% is
in the homogeneous configurationxn52j in the left well of
the potentialU(x). Then, for each realization of$xn(t)% dic-
tated by Eq.~31!, we record the time required for the chain
enter the right well, specified by the conditionxn(t).j/2,
for all n. The inverse of this time averaged overM (@1)
realizations is identified as the escape rateR.

Figure 5 shows the result forN512,16,32, with varying
K. The coil-to-stretch transition pointK5Kc is marked by an
arrow for N512 and 16. The solid lines show the globul
limit escape rateR0 for N512,16. R0 for N532 is too
small and beyond the range of the figure. The dashed l
show the rate estimated by taking into account the decre
of the activation energyDF for K,Kc ~but not the fluctua-
tion effect around the stationary states!. The seemingly large
discrepancy between these estimates and the simulatio
sults comes from neglecting the fluctuation effect contain

FIG. 5. The simulation result of the rate. Barrier crossing r
~inverse mean time! is plotted against the coupling constantK of a
harmonic chain forN512,16,32. The units are chosen such that
barrier curvaturevB

251.5 ~see text!. Hence, the unit of measure fo
K is vB

2/1.5 and for the ratevB /A1.5. Horizontal solid lines show
the globular limit valueR0 for N512 ~upper line! and 16~lower
line!. Dashed lines are the rates expected from the reduced ac
tion energyDF,NUB at K,Kc for N512,16,32~from the top!.
The arrows indicateKc for N512,16.
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in the prefactor of Eqs.~18! and~28!, which in fact is found
to enhance the rate by nearly one order of magnitude n
K5Kc .

Figure 6 shows our full analytical results for the rate
Sec. III, in comparison with the simulation data forN516.
The rateRh obtained by the second-order calculation of t
fluctuation integral overestimates the rate nearK5Kc by ex-
aggerating the free-energy decrease at the barrier top du
enhanced fluctuation of the chain. The rateR obtained after
the leading-order anharmonicity correction toRh shows
fairly good agreement with the simulation result and captu
reasonably well the gradual increase in the rate with decr
ing K nearKc .

A remarkable feature of our simulation results is that t
rate ismaximizedat a small value ofK for eachN. The rate
of such an ‘‘optimized’’ barrier crossing decreases ve
slowly with increasingN. In this parameter regime of wea
coupling, it is found that interwell dislocation of the who
chain occurs via frequent individual crossing and recross
of the beads across the barrier. This regime is beyond
scope of analytical calculation of the present work. The tu
over of the rate occurs as a result of competition between
coherent motion of the chain~which favors largeK) and the
efficient dynamics achieved by reduced activation ene
~which favors smallK).

V. SUMMARY

In this paper we have calculated the rate of therma
activated escape of a linear chain out of a local minimum
an external bistable potential. We have identified the esc
process as a stochastic process occurring in the chain
figuration space and applied multidimensional Kramers r
theory to calculate the rate. Using the continuous mode
the chain, we found the stationary points of the chain ene
functional and calculated the free energy of fluctuation n
these points using the functional integral formalism. T
saddle point structure of the chain energy functional play
crucial role in determining the rate. For largeN (N.Nc) or
small coupling strength (K,Kc), the homogeneous sadd
point configuration changes to a ‘‘kink’’ configuration whic

e

e

a-

FIG. 6. Same simulation data as in Fig. 5 forN516 compared
to the full analytical result ofR in Sec. III ~dotted line!. RateRh

containing the fluctuation effect up to second order fails to g
correct results nearK5Kc . Again, the unit of measure forK is
vB

2/1.5 and for the ratevB /A1.5.
5-9
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corresponds to a stretched chain state at the barrier top.
coil-to-stretch transition greatly lowers the activation ene
of the chain, and thus greatly enhances the escape rate
flexible chain compared to that of a rigid, globular one.

Calculation of the effect of chain fluctuation on the esca
rate is an important result of the present study. For a h
monic chain, fluctuation around the stationary configurat
is always more favored at the barrier than at the well, due
confinement of the chain at the well. This effect results in
even lower free-energy barrier that the chain must surmo
DF,DF, and is most prominent near the coil-to-stret
transition pointN5Nc or K5Kc .

Our calculation in Sec. III shows that above the coil-t
stretch transition, a chain extended over the parabolic ba
range renormalizes the barrier curvaturevB

2 to a smaller
value. This comes from the extended nature of a stretc
chain sensing different points of the potential curve w
different curvatures, and leads to effectiveslowdown of
chain dynamics at the barrier. This effect will strengthen
a longer chain, and in a symmetric potential, the unsta
mode at the saddle point will eventually become a mode w
a vanishing eigenvalue. The escape dynamics then foll
.

ry

d

e
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the sequential translocation or kink diffusion scheme,
which a relevant description will be in terms of the effecti
reaction coordinate as in the polymer translocation throug
membrane@10#, or by direct application of kink nucleation
and diffusion theory as in@16#.

In summary, conformational change and fluctuation o
flexible chain renormalizes the external barrier to sign
cantly change the escape dynamics quantified by the r
Identification and calculation of various aspects of th
flexibility-induced effect are the main subjects of this pap
Apart from the possibility of direct application to biotechn
logical processes such as electrophoresis, the present s
provides a valuable analytical model that enhances un
standing of interesting and relevant features of thermally
tivated processes of a soft, complex system.
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