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Coil-to-stretch transition, kink formation, and efficient barrier crossing of a flexible chain
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We study the thermally activated barrier crossing of a linear, flexible cfpmitymep under the Kramers
bistable potential using the multidimensional barrier crossing theory and the functional integral method. We
find that above a critical chain length or below a critical chain spring constant the chain at the barrier top
undergoes coil-to-stretch transition, resulting in the formation of a kink. The emergence of the kink mode
renormalizes the activation energy to a smaller value so as to facilitate the barrier crossing. In addition to this,
the larger fluctuation of the polymer in the unstable region of the poteicbahpared to that in the confining
well) further reduces the free energy barrier, and greatly enhances the crossing rate of a flexible chain. We
calculate analytically the crossing rates and confirm the results by numerical simulations. The polymer in
barrier crossing thus reveals its conformational flexibility and adjustment to external forces as characteristic
features of soft matter dynamics.
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[. INTRODUCTION section[12]. Diffusion of polymers in random porous media
has also been much studied in connection with gel electro-
The thermally activated barrier crossing is not only of phoresis[13]. Hanet al. have reported a controlled experi-
fundamental importance in describing many practical probment on the escape of a long trapped DNA chain through a
lems in physics, chemistry, and biology, but also instrumennarrow pathway14]. These studies showed that the entropic
tal in understanding stochastic paradigms such as stochasgéfect coming from the conformational flexibility of poly-
resonance and thermal ratchets, which have attracted muéhers plays an important role in determining their dynamical
attention recently1]. Since Kramers treatment of the barrier Properties, and revealed some remarkable effects of chain
crossing dynamics of a Brownian particle interacting with connectivity in the presence of external fields and environ-
the environment, much progress has been made in this fieliental biases. _ _ _
[2] to study the barrier crossing rate of a single partide In this paper, we consider a thermally activated barrier
degree of freedoimin various complex situations including C€rossing or the escape of a linear flexible chepolymen
those with memory effe({G], nonequ“ibrium ﬂUCtU&tiOlﬁ‘]-], over the barrier of a Kramers bistable pOtentEg. 1) With
and quantum tunneling5]. Recently, on the other hand, the chain being viewed as a coupled arrayNoBrownian
there has been much interest in the stochastic dynamics ®Rrticles(beads, each subject to the potential, the problem is
systems consisting of more than one degree of freedom. A@ 9eneralization of the well known Kramers theory to many
outstanding example is the array-enhanced stochastic resgegrees of freedom. Although for a real polymer under an
nance[6]. There, the optimal signal-to-noise ratio of the re- unstable potential, anharmonic segmental tension can be in-
sponse ofa typ|ca| elementin an array of periodica”y forcedyoked for finite chain eXtenSib”ity, here we Only consider a
damped bistable oscillators is greatly enhanced when sui€hain with simple harmonic coupling between neighboring
able coupling is introduced between neighboring oscillatorsbeads(Rouse modegl Our model will be appropriate for a
Other examples include the synchronization-like behavior ofituation where the barrier curvature is small on microscopic
two coupled stochastic bistable systefi¥d and directed scales so that the extension of individual segments remains
transport of two or more elastically coupled particles in a
ratchet potential under nonequilibrium fluctuatig®,9]. A U(x)
main concern in these examples has been the effect of th
coupling on the coherent dynamics of the whole system. T'n,n=12,.,N
As interconnected, flexible systems as they are, polymer:
and membranes manifest interesting cooperative dynamics c
biological relevance in certain noisy environments and exter-
nal fields. In particular, the transport of polymers in inhomo-
geneous media has been widely studied with possible appli
cations to DNA/RNA manipulation, drug delivery, and
protein inclusion and penetration through cell membranes. In
recent years, the translocation of a long flexible polymer
through a membrane pore has been a subject of active inves-
tigation, where it is important to understand the driving and FIG. 1. A linear chain ofN identical beads under bistable po-
blocking mechanismpl10,11]. Slateret al. suggested an in- tentialU(x). The potential has local wells at= + £ and a barrier at
teresting “entropic ratchet” mechanism for a polymer mov- x=0.The dashed line indicates the metastable Kramers potential
ing in a channel with an asymmetrically modulated crossconsidered if15].
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small throughout the dynamics of the chain. In a relatedlexibility and the associated conformational transition that
study, Park and Sunfd5] considered a metastable Kramers we seek to find in this work. Results of our numerical simu-
potential varying on a length scale much larger than thdations are presented in Sec. IV, and Sec. V summarizes the
polymer size, with one side falling to negative infinity paper.

(dashed line, Fig.)1 There, a chain with harmonic coupling

can extend indefinitely at the barrier top whBhis suffi- Il. DEFINITION OF THE PROBLEM
ciently large. Therefore, to overcome the difficulty, a lattice AND MULTIDIMENSIONAL
polymer model was used for numerical computatiptfs]. KRAMERS RATE THEORY

R tly, Sebasti d Pdule idered imil ) . . . . .
ecently, sebastian an dule] considered a similar Consider a linear chain o identical beads in three-

problem of barrier crossing of a polymer in a double-well . X L . .
potential in the opposite case, with the barrier width muchdimensional(3D) space which is initially confined in one

smaller than the polymer contour length. In their solution, Vel 2°f a one—dzlmtzanséllongl bistable  potentidll (x) =

part of the polymer is first activated over the barrier to form — (©8/2)X°+ 1/4(wg/£7)x" (Fig. 1. The potentiall(x) has

a kink or a kink/antikink pair(hairpin), and then the entire WO local wells ax= = ¢ separated by a barrier centered at
polymer translocates to the other side of the barrier by move*=0. The barrier has the hez'ghUBZZU(O); U(=¢)
ment of the kink(and/or antikink along the contour. Be- =®g&’/4 and the width 2. The wg and wg=2wjg are the
cause the kink or antikink is essentially a localized object incurvatures at potential maximum and minimum. Our ques-
the long-chain limit, the activation energy is independent oftion is: what is the rate or inverse mean time of the thermally
the chain length, and the crossing rates for polymers of difactivated crossing of the whole chain from one well to the

ferent lengths are determined by the kink diffusion timeother? To simplify the problem, we confine ourselves to the
along the chain. case where the crossing dynamics is much slower than the

Motivated by polymer transport in mesoscopically orinternal chain relaxation so that multidimensional Kramers
macroscopically modulating environments, we will considertheory is valid as described below. For the interaction be-
a Kramers potential with a barrier of large enough width thattween the beads, we consider only the nearest neighbor cou-
the barrier crossing process is dominated by the activation d¥ling characterized by the potent(Ar) =V(|r,.1—rq|),
the entire polymer over the barrier top, rather than by the'=1,2,... N—1, wherer,, n=1,2,... N denotes the po-
motion of a preformed, localized kink. In this case, the acti-sition of thenth bead. For simplicity, we neglect other inter-
vation energy depends critically on the number of monomer&ead interactions that give rise to excluded volume effect and
N. In the short chain limit, the polymer will maintain its bending stiffness.
free-space configuration of coiled form, since the potential In many cases, the simple bead spring model for the
does not vary significantly over its radius of gyration. Thuschain, V(Ar) = $K(Ar)2, K=3kgT/I? wherel is the mean
the activation energy is proportional i and the crossing is free-space segmental length, gives a satisfactory description
slowed down exponentially a¥ grows. But this cannot go of the conformation and dynamics of a real polymer. Strictly
on indefinitely as we increasd because at some point the speaking, the segmental tension of a real polymer in the pres-
polymer is capable of undergoing conformational transitionence of an external potential becomes nonlirjear, anhar-
to a stretched state to greatly lower the activation energymonic terms inV(Ar) become importajtwhen the segmen-
Upon further increase df, the mode of translocation will tal length exceeds some tolerance range, &ayVhen the
eventually become that of kink diffusion as considered inpotential has a barrier of width{2zand a curvature at the top
[16]. given by wé, we can show that in thermal equilibrium the

Our aim in this paper is to describe analytically the onsetsegment of a harmonic chain will be extended at most by
of this coil-to-stretch transition and its effect on the free-Ax~§,/sz/K [17] in the direction of potential variation.

energy barrier as well as the crossing rate. It is found thaHence we get the following self-consistent condition for the
beyond the transition, which can be tuned either by theharmonic description of the coupling function:

length of the polymer or the coupling strength, the first

Rouse mode gives rise to the kink formation, which lowers o

the free-energy barrier to enhance the crossing rate. Also, the (=€ B 1)
large fluctuation occurring near the transition point is found K

to contribute significantly to the reduction of free-energy ) . o
barrier. where( is a chain parameter describing the range of segmen-

In Sec. Il we define our model and the problem moretal extension beyond which the Hooke’s law breaks down.

precisely. Using the functional integral method for evaluat-V& may assume in good approximation that the chain in free
ing the free energy, we calculate the chain crossing rate for 8Pace is harmonic, that ig, is sufficiently larger than the
bistable potential and harmonic coupling in Sec. lll. Thefree-space mean segmental lengit; \VkgT/K. Then the
main theoretical base is the multidimensional Kramers rat@bove condition is guaranteed KET= w3¢2, which means
theory applied to the dynamics in chain configuration spacethat the barrier height is, at most, of the orderkgfl per
Analytical expressions of the rate are obtained in ranges afegment. In what follows, we consider the parameter regime
potential and chain parameters which cannot only be relevanthere Eq.(1) is met, thus neglecting anharmonic terms in
to polymer transport in potentials varying on mesoscopic oM (Ar); V(Ar)=3K(Ar)?2.

macroscopic scales, but also show dominant effects of chain Now the total energy of the chain under potentiglx) is
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N1 population confined in the well dk,}_ . This is the famous

N
1
q)({rn}):nZl U(Xn) + nZl §K|rn+1—rn|2- Kramers rate theory in the overdamped limit formulated by
- B Langer[18]. The resulting ratéR is written as

If we work in the overdamped limit where the bead’s mo- wn 7

mentum relaxation has occurred already in the relevant time R=_2 "8 2mkgTe PAY, (4)
scale, we can regard the escape process as a Brownian mo- 21y Zg

tion occurring in the 8l-dimensional configuration space of
the chain where the above energy function is defined. Notin
that the energy function does not involve coupling betwee
different Cartesian coordinates ff,} ={x,,Y,,z.}, We can
reduce the problem further by separating the dynamics along

Z,andZg are, respectively, the partition functions associated
Sith the fluctuation of the system near the initial stable point

’l?n}, and near the saddle poifit,}g. Explicitly,

the x direction governed by the energy function ZO:J' dN{x,} e BL(xa)) P ({x0} )] (5)
well
N N-1 4
— - _ 2 _
P({xa})= 2, UOn)+ 2 5K 1= x0)% (2 Z= f L N e B0l (g
1 (unstable mode

The probability distributiorP({x,};t), which represents the
probability per unit volumgiin {x,} space of the chain to

have configuration{x,} at time t, satisfies the following

Fokker-Planck equation:

The integral in Eq(6) is over the hypersurface which con-
tains the saddle point and is normal to the unstable mode.
The rate equatiod) can also be written as

IP({Xn}:t) ala J R= %e*BAF, (7)
TIDZ ax | ax ’80_x|q)({x”}) P({xn};t), 2my
(3)  whereAF is the free-energy barrier defined by
where D is the segmental diffusion coefficient and AF=A®—kgTIn(Zg/Z}), 8
=(kgT) L. In they andz directions the chain simply shows
the free-space Rouse chain dynamics. whereZ| is the partition function at the well with the lowest-
The configuration spacgx,} contains two stable points mode contribution omittedZ(=Z,/(\27kgTwy?). AF
that correspond to the chains localizedxat +& or x= consists of both the activation energyp and the difference

—&. These two states, which we will denote Py}, and in the free energy of fluctuation arourg,}g and{x,} _ .

{X,}_, are separated by a higher-energy region or barrier in Note that the above rate formalism can be applied to our
{X,} space. Our problem is to find the rate at which ourproblem if we identify a well defined transition state of the
system (chain starts from its initial confinement around chain represented by a localized saddle point in the configu-

{;n}_ and escapes over the barrier to reach the well arounkgtion space. This can be seen by noting that the expression

{Xn}+ . The relevant activation energy of this process is theEq' (4) gives the rate in terms of only local properties of the

lowest threshold energy in all the paths connecting the statesaddle and the metastable points, without showing depen-
9y P 9 dence on, for example, the distance between these points in

{Xn} - and{x,}, . Geometrically, it is determined by the path ry 1 space. One example with such dependence is when the
crossing the saddle poifk,}g in the configuration space, chain contour length is much larger than the width of the
which is a stationary point with respect to a variatiof) (  barrier so that the chain translocation from one well to the
satisfying other occurs via movement along the chain contour of an
extended portiorikink) of the chain bridging the two wells,
5‘D|{IH}B:0 while the remaining majority of segments reside in one well
or another[16]. In the following sections, we will concen-
and involving only one unstable mode along which the “re-trate on the case of a relatively wide barrier and a small chain

action flux” runs from{;n}i to {;n}Jr . In the next section for which the rate eXpI’eSSion E(:fl-) obtained by the multi-

we will see that this “transition state{’?n}B corresponds to dimensionl Kramers theory is valid.

either a localized configuration df,} aroundx=0, or a
kink configuration representing a stretched chain aroxnd IIl. CALCULATION OF THE RATE

=0, depending on the chain and potential parameters. Consider the quartic double-well potentia(x) in Fig. 1.

In any case, let us denote the activation energ\ds i the number of beadsl is large and the attractive coupling
=®({xp}g) —P({xn}-). If AD>kgT, the crossing time is among the beads is strong so that any two neighboring beads
much longer than any internal chain relaxation time, and italways remain close to each other in the length scale over
can be calculated from an approximate, quasistationary soluyhich U(x) varies, we can treat thd-bead chain as a con-
tion to Eq.(3). The rate is ob'@ned by dividing the reaction tinuous string represented by a pafk,! —{x(s=n/N), 0
flux j across the saddle poifik,}g by the total probability ~<s<1}. In this limit, via transformatior2\_,—N/fds and
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|xn+1—xn|—>%|x(s)|, we get the energy functional D-UX(S)]— — d_z (13
N2 ds?
1
(IJ=CD[x(s)]=NfO dsL[x(s),x(s)], ©  defined in the function spadai(s), 0=s<1, u(0)=u(l)
=0}. The operator— (K/N?)(d%/ds?) has the eigenvalue
' I 1 o2 1K, spectrum K/N?)7?%j2, j=0,1,... N—1, associated with
LIX(s),X(s)]=— —Bx(s)2+ - _BX(S)4+ ~ —x(s)?, the eigenfunctiongnormalized to unityknown as the Rouse
2 4 & 2 N? modes,
wherex=dx/ds. The free-end boundary condition, consis- V2 j=1,2,...N-1
tent with the bead-spring modEL9], is expressed adx/ds uj(s)={ }cos( mjs), . .
=0 ats=0,1. In order to perform the functional integration 1 =0

for the partition functiong§Egs. (5,6)], we need to identify o
the stationary solution to Eq9) around which the fluctua- Hence atxy(s)=—¢, ® has the eigenvalue)s?zu”(—g)

tion is to be evaluated. +(K/N?)7?j2, j=0,1,...N—1, which are all positive,
The stationary patls) is(are obtained from the Euler- confirming that these solutions correspond to stable configu-
Lagrange equatiof20] rations. Note that)”(— £)=2w3=w3. At X5(s)=0, the ei-
genvalues of @ are \’=-wi+(K/IN?)7?2, |
%: i % 0<s<1 =0,1,...N—1. Here the smallest eigenvalue is negative
ax ds gy’ ' (=—w3). The next eigenvalue, associated with the first

. _ . . _ . Rouse model,(s)= /2 cos¢rs), is positive as long as
which yields the differential equation for the stationary path
X(s), ) K r?
) wB<V (14)
27, YB3
—X(S)=— wgX+ —X, 0<s<1, (20
§ (coiled-state barrier crossing regimé&hus in this case the
, Lo e — fixed pointxg(s)=0 is indeed the saddle point with only one
with boundary conditionx(0)=x(1)=0. x(s) can be re- nsiapie eigenmodey(s) and constitutes the transition state
garded as the trajectory of a classical particle moving in the the chain dynamics bridging the two stable configurations.

:g\éﬁlréid potential-U(x), with zero initial and final “ve- Since the statez_(B(s)EO corresponds to a compaoiled)
There are three trivial solutions consistent with the bound-ChaIn confo_rmatlon at the bamer top and Fhe _smgle_unstable
ary condition: modeuo(s)=1 represc_ents uniform translatpn in tRelirec-
tion of the whole chain, we conclude that in the parameter
(11) regime given by Eq(14) (except whenw3~K 72/N?, where
a large fluctuation will occyr the chain crosses the barrier in
a compact, coiled form.

X(5)=0,%¢.

It is obvious that the solutiong(s)E + ¢, corresponding to
the chains confined in either well, are stable. We will assume _ _ N
that the chain is initially confined in the left well near A. The crossing rate below the coil-to-stretch transition
— &, so that the metastable configuration is denoted by | et ys calculateR in this coiled-state barrier crossing
xo(s)zx_(s)z—g.2 We can show that Eq11) is the only  regime. The net barrier height® is the difference between
solution whenN?w5 <K 2. Thu_s in this parameter regime the energies of the two stationary statgsandx,:
the homogeneous configuratiofs)=0 is the onIy_saddIe _ _
point (in {x,} space bridging the two stable stategs)= AP =®[xg]—P[Xo]=NUp. (15
+ ¢, We will denote such transition staxg(s). " . . .

To assess the effects of the fluctuation and the saddi&N€ partition functions accounting for the free energies of

point structure of the chain energy functional we investigatd Uctuation at the well and saddle are calculated from the
the eigenvalue spectrum of the operator of second-order efunctional integrationgcomparable to the discrete versions

pansion ofb at the stationary points. This operator is defined=ds- (5 and(©)],
by the expansion

_ _ N1 ZO=Jwe”D[5x(s)]e—ﬁ(¢’[70+63<]—¢’[70])'
dx+ 5x]=q>[x]+§f0 dsox(s)®ox(s)+ O[(8x)],

12 7= j D[ Sx(s)]e A@Ixa+ o~ Plxe)
B saddle :
1

and corresponds to the differential operator (unstable modg
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For the integrals over fluctuatiofix(s), consider the trans- increasing withN, while —w§+(Kw2/N2)>O.

formation A singular feature of the above rate expression obtained
by harmonic approximation o® is that it diverges aa
=—w3+(K7?IN?) goes to zero:R[— w3+ (Km?/N?)
—0]—=. We can think of {})¥? as the frequency of the
first internal(Rouse mode of a harmonic chain renormalized
in terms of the eigenfunctions(s) of the operator. Upto 4t the barrier top with curvature? ; when the intrinsic mode

N-1
5x(s)=jzo X;u;(s) (16)

second order ix (harmonic expansion eigenvalue K7%/N?) matches the external force constant
N N2 w5, \J vanishes to allow infinite fluctuation of the chain.
D[x+ oX]— D[x]= = 2 AJX,Z, (17)  This causes the free energy of the chain at the barrier top to

i= decrease indefinitely, and the rate apparently diverges. This
singularity is an artifact of the harmonic approximation
with \; representing e|the)tO or )\ (andx represent|ng<0 where the quartic term of the potential is neglected, i.e., the

or xg). It turns out that the proper change of integrationpotential is treated as (x) = — (w§/2)x?.

measure in transforming variables frof(s) to {X;} reads The singularity inR can be removed by including higher-
order(anharmonigterms ofX;’s in calculation ofZg . Since
the fluctuation along th¢ =0 mode does not contribute to
| Proxo1- [ aiNixg)- vy ). g the=
Zg, inserting 6x(s) = E X uj(s) into 6®g= ®[xg+ OX]

CD[xB] d[ 6x], we get the relevant anharmonicity correc-

Combining these we get, within the harmonic approxima-
g . PP tion to 6P

tion for the variation in®,

Zo=(\27kg T N2 - AQ_ )12 Nt 3 1
0 ® 0 AN sPg=5 3 NPXP+ZNwf =X (20)
=1

Zg=(2mkgT)N I (AB.. A _ )2 : ¢

and finally from Eq.(4), Now with the corrected expression HO), the barrier par-
tition function becomes
_wg (AR DM
2my ()\? . ~)\ﬁ,1)1/2 Zg= J' d(\/le)efﬁ[(NIZ))\?Xi+(3/8)Nwé(l/§2)xi']
o\ 172
2, KWZJZ) ' N-1
N-1 | @oT™ — 5 By 2
_ wpwWq N2 efﬂNUB X J’ d(\/ﬁxz) . d( \/NXNil)e*ﬂ(N/Z)jEZ }\j Xj
2wy 51 K m2j2| ¥
—ogt 2 BT B B 2| €
N =( ZWkBT)N_l()\l"')‘N—l)_lzf |
€

wgwg | 02| ™ smt’(N\/wS/ )\ 7,6NUB 18

27y sm(N«/wB/ ) ' where
for —sz-t- (K7?/IN?)>0. The last approximation holds for a (= 02 (30
N>1. In the strong coupling limiK —, the rate becomes fla)= —j dQ e (*2Q°-(EBQ7
R(K—x)— (wgw/2my)e PNYs=R,. R, is the rate ex- o
pected when theéN-bead chain acts like a single globule,
collapsed by infinitely large tensiqd5]. As the chain attains - Kr?
flexibility by decreasing, the rate increases. For all ranges e=\j/wg=—1+—— (21

>
of parameters satisfying the condition w3+ (Kw2/N?) @gN
>0, the activation energy barrier itself remains the same:
®[Xa]— @[ xo]=NUg, and the effect of flexibility is wholly "¢

contained in the prefactor of the rate, which represents the

effect of chain fluctuation near the saddle and well configu- L, 1 [kgT
rations. For a fixe, the rateR=R(N) is also enhanced €= £V N2’ (22)
with increasing N compared toits globular-chain limit

N) by the fact
Ro(N) by the factor The € is the fractional difference between the first Rouse

w? va sinh(N /wole) 12 mode engenvaluek(72/N?) and the barrier curvaturasg),
RIRy=| — — ] 1 (19 or is proportional to the fractional difference between the
0 siN(Ny wg/K) polymer kinetic energy and potential energy at the barrier
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[15]. In the following we will usee as a small parameter
describing the coil-to-stretch transition. THéa) goes to
unity for «>1, and is proportional tQ/Eocﬂ for a<1.
Hence thee* represents the value af below which the

anharmonicity correction to the rate becomes important.

Since we are considering the case (tftal barrier height
=(1/4)Nw§§2> kgT in order for the Kramers rate theory to
be valid, we can say* <1. The above expression @f has

no singularity a9\§—>0, and reduces to the result of second-

order calculation wher> €*.
The rate now can be written

€
R
6*

R=Rhf( (23)

whereRy, represents the rate expression equatk®) calcu-
lated with the harmonic expansion 6Py .

B. The crossing rate above the coil-to-stretch transition

Now let us see what happens immediately above the coil-

to-stretch transition. Since? and e tend to be negative, not
only the modaug(s) but alsou;(s) tend to be unstable at the
barrier top. This signals the emergence of a new saddle poi
configurationxg(s) with smaller energy and only one un-
stable mode. Indeed, we find a nontrivial solution to &dp)
centered ak=0 with the free-end boundary condition. The

PHYSICAL REVIEW E63 021115
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0 N=N, 2N,
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FIG. 2. Activation energy for a harmonic chain surmounting
quartic double-well potential barriefa) AP vs N for fixed tension
K of the harmonic chaimN= N.= 7K/ w§g corresponds to the coil-

solution corresponds to a stretched chain configuration trae-stretch transition poiné=0. (b) A® vs K for fixed N. K=K,

versing the barrier topx=0) only once ats=3. This is
analogous to the kink, or one-instanton, solutionihfield
theory. Thee=0, therefore, marks the conformational tran-
sition that we call coil-to-stretch transition. For smad|

= |)\?/w§|, we can find the solution perturbatively by insert-
ing X(s) =xg(s) = |21 X;u;(s) to Eq.(10). By multiplying
each side of the resulting equation by(s) and integrating

= w3N?/7? corresponds to the transition point.

functions of N and K. Note that the activation energy does
not depend oiN at largeN because of deformatiofstretch-

ing) of the chain over the barrier. A similar effect has been
reported in an experiment on long DNA chains with different
lengths escaping from entropic trappifit4], and was also
mentioned in the recent theoretical work by Sebastian and

over Oss<1, we get coupled equations relating coefficientspaul [16]. The eigenvalue spectrum of normal modes at

X1,X5, ... XNy—1. We find that as|e|=—e grows from
zero, X; grows asX;~|e|Y? while all other coefficients
scale asX; (j=2)~|e[*? or smaller. Hence fofe[<1, we

can well approximate the SOIUtiOTE(S) by the first cosine
mode

Xg(8)=X1U;(S)=X14/2 cog 7s),

X, beingX;=&2|€|/3.

(29)

Now the corresponding activation energy is calculated to

be

AD=P[xg(s)]—P[xe]=NU —ENwzfzez (25)
B 0 B 6 B .

. . i o)
This represents the decrease in activation energy due to ttb(%)

chain adaptability to external forcing, that is, the ability of

the chain to make conformational transition to an energeti-
cally more favorable, stretched state at the barrier. For large
|€|, we can calculate the saddle point configuration and the 2y

activation energy by numerically solving E(L0). Figure 2
shows the resulting reduction in activation eneryp as

Xg(s) shows renormalization of the CurvatuZ% along the
unstable direction in the reaction pdtkhich, in the previous
case ofe>0, has been the same as the geometrical curvature
sz of the real potential barrigrand the restriction of fluc-
tuation near this point along stable directions. Again we can
calculate these eigenvalues perturbatively for snjall
From Eq.(13), the second-order expansion operatoxg i)

is

2

N? ds?

The last term is proportional to the small paramétérand
makes a “perturbation potential” in the Sclinger-type
eratord®. By applying the first-order perturbation theory
guantum mechanics,

w5+ 4w]|e|cod(ms).

. 2|elwg, j=0
)\Bzfods U (s)?4wj| elcod(ms) = 3lelog, j=1
2lelwd, j=2,

(26)
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we get the normal mode eigenvalues for ttaightly)
stretched chain:

(wg)’=\§|=(1-2[e))wg, (27)
B 2 m’ 2 2 2
A= —wgt F+3|e|w8= —|elwg+ 3| €| wg

=2|elw3>0,

K ?j?
B _ 2 2
Aj2p=—wgt B +2| €| wg -

Note that the first (=1) mode is indeed stable, and all the
higher modes have larger eigenvalde=presenting more re-

stricted fluctuatioh about the stretched sta@(s) of Eq.
(24) than they would have about the coiled stafg)=0.

Now up to the second-order expansion &by as before,

1

V2

N-1 K 12 1/2
x [T (—w§(1—2|e|)+ ) :
j=1 NE

ZB:( \IZWkBT)Nil

from which the rate becomes

Da@o 2(5;)1’4 sinh(NYw2/K) | V2
2my "\ @2 sin(N @3/K)

« e—B[NUB—Nwégzszm], (28)

N>1, for e<0,)e|<1.
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FIG. 3. Rate of barrier crossing of a harmonic chain over a
double-well potential barrier. The potential parameterSLafghoé
=2, BUg=1, él\kgT/wi=2. (a Rate vs K. N=50, K,
= w3N?/ m2=253w3. (b) Rate vsN. K is fixed atK/w3=200 for
which Nc=77\/K/sz=44.4. Ry is the rate when the chain crosses
the barrier in a globular fornz,, is the rate calculated via second-
order expansion 0bd, while R represents the first anharmonicity
correction toR;,. All the rates are in units obgwy/(27y). The
dashed lines show the Boltzmann factior log scalé e #*® asso-
ciated with the “bare” activation energgwithout fluctuation ef-
fect) of the chain.

The rate expressions E@3) and Eq.(29) match continu-
ously and nearly smoothly a=0 as shown in Figs.(d) and
3(b). Figure 3a) depicts the rate as a function Kffor fixed
N=50 and Fig. &) the rate with varyingN for fixed K

o . o _ 2 - - -
The multiplication factor 2 in the first line of the above equa- =200w5 . The stretched-state barrier crossing regiere0
tion comes from the fact that there are two symmetric trancorresponds to eitherK<K.=wgN“/a= or N>N,

iition stategwith the same eigenmode struct)J@(s) and
Xg(1—5).
As in the case>0, the abover diverges ak— — 0, due

to infinitely large fluctuation near the staTg(s) at the con-

= m/K/sz. These figures summarize the rate calculations in
this section and suggest some important points worth noting.
First, the general trend toward large increase of the rate for
€<0 (compared toR,) is due to the drop in activation en-

ergy after the conformational transition of the chain to a

formational transition point of the chain. We can again regu-stretched state. The Boltzmann factor associated with this
larize this by inserting an anharmonic correction term intodecreasingA® is plotted for comparison with dashed lines

the partition functionZg to get
€
R=TRng = (29

whereR,, is given by Eq.(28) and the functiorg is defined

as
1 Jlal - o2 | — (@/2)Q?%— (3/8)Q*
g(a)=§ 71_e B dQe . (30)

in both Figs. 8a) and 3b). Second, the rate shows remark-
able enhancement compared Ry above the enhancement
due to the substantial decrease in activation energy. This is
because the increased chain fluctuation gives rise to a reduc-
tion in the free-energy barrier. Calculations based on the
second-order expansion @by overestimate this effect to
predict divergingRy,. Our regularization scheme by anhar-
monicity correction seems to be satisfactory in describing the
(nearly smoothly varying rate across the transition point, in
good agreement with the numerical simulation shown in Sec.
V.
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FIG. 4. Schematic plot of the free-energy barref for a har-
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The gap may be reduced for largdrsince more segments

will be likely to be confined in the well regions, but it re-

mains positive throughout. Note that the rate itself will not
show a plateau as the barrier doesd{ or AF) for very

large N. This is because the unstable mode frequengyis
also dependent oN and goes to zero for large (the renor-
malization of barrier curvatuje Eventually, the escape dy-
namics will show a crossover to the kink diffusion regime
where the chain crosses the barrier by diffusive motion of the
kink obtained as a solution to E¢L0). The crossing time in
this case was reported to be proportionaNtif the poten-

tial is symmetric[16].

monic chain surmounting a double-well potential barrier compared OUr finding that the polymer crosses the barrier by form-

to the activation energp ®.

Beyond the Smalle| Approximation.in the above, we

have calculated the rate below and just above the coil-to

stretch transition, i.e., the rate fer>0 and e<0 with |¢]|

<1. Evidently, the parameter regime that involves substan

b

relevance in experimental settings. A description of the cas

tial chain extension over the barrier is important and of muc

with very largeN or very small tension will eventually re-

quire theoretical approaches very different from those use
here, since we may not be able to identify a localized tran
sition state in the chain configuration space. For mode¥ate
and tension for which the approach in the preceding sectio
remains valid, we can in principle always calculate the rat
above the coil-to-stretch transition poine<€0) by numeri-

cally solving Eq.(10) for xg(s) and calculating the eigenval-
ues of the operator in Eq13) [21]. Here we give general
analytical predictions on the behavior Bf when a substan-
tial extension of the chain at the barrier is involved in our

ing a stretched portiotkink) at the barrier top is reminiscent
of the kink nucleation in the overdamped soliton theory that
has been widely studied in literatufgor example,[22]).
However, while in the kink nucleation problem one generally
considers an infinitely long strin@r a string long enough to
contain many kinks as localized objegthere we are inter-
ested in the case of a relatively short chain for which the
arrier crossing process is dominated by the activation of the
Whole chain on the barrier top, rather than the kink diffusion
echanism. The latter appears when the chain becomes suf-
ficiently long, and our analysis has been focused on the tran-
sition between the short and long chain behaviors. We

nghowed that at a critical chain length, or at a critical cou-
eoling constanK ., the saddle point structure of the problem

is modified, which dramatically changes the crossing rate.
The fluctuation effect at such a transition point is crucial in

determining the rate, and gives a divergent rate if we simply
adopt the harmonic approximation scheme as is done in
many problems with fixed saddle point structuiecluding

the kink nucleation problem We identified the regime

model. We discuss in terms of the effective free-energy baryhere the harmonic expansion is insufficient, and calculated

rier AF defined in Eq.(8).

Wwith the model potential U(x)=—(w3/2)x?
+ (w3l £%)x*, the saddle point configuratiog(s) above
the coil-to-stretch transitione(<0) will be contained in the

range—§<78(s)<§. For a harmonic chain, the fluctuation
near this configuration
®—U"[xg(s)]— (K/N?)(d?/ds?). Since at any poink be-
tween— ¢ and¢ the second derivativel”(x) is smaller than
at x=—¢, U"(x)<U"(— &) =w3, all the stable(positive
eigenvalues ofb at;B(s) are smaller than those at the ho-
mogeneous com‘iguratioTb(S)E —¢. That s,

the fluctuation effect in that regime by including the leading-
order anharmonic term in the expansion of the chain fluctua-
tion [see Eq(20)].

IV. NUMERICAL SIMULATION

is governed by the operator

Here we report the results of numerical simulation of the
barrier crossing dynamics of a harmonic chain under the po-
tential U(x)= — (03/2)x*+ 3(w3/£?)x*. The parameter
range covered is not comprehensive, but the simulation sup-
ports the general conclusion of the preceding section and
confirms the reliability of the analytical methods there. The
starting point is the Langevin equation governing the motion

NP<N?, j=1,...N-1. of the x component of theath bead[23],
. ) , L dx, 2 wZB 3
This leads directly taZg>Z, or, in view of Eq.(8), AF Y = 08X~ — Xo+ K(Xn_1+ X1 1~ 2Xn)
<A®d. The free-energy barrier is less than the activation dt 3

energy since the fluctuation is more restricted at the well

than at the barrier. This is generally true regardless of the +V27keTén(t).

exact shape of the double-well potentii{x) as long as the

chain is harmonic. where y is the damping constant for one bead af{t)
Figure 4 shows schematically the expected behavior ofepresents the Gaussian white noise satisfying

AF (dashed ling with increasingN. The differenceA®

—AF is large near the coil-to-stretch transition po#it 0.

(31)

(&n(1))=0,
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FIG. 5. The simulation result of the rate. Barrier crossing rate FIG. 6. Same simulation data as in Fig. 5 fé=16 compared
(inverse mean time's plotted against the coupling constahbf a to the full analytical result ofR in Sec. Ill (dotted ling. RateRy,
harmonic chain foN=12,16,32. The units are chosen such that thecontaining the fluctuation effect up to second order fails to give
barrier curvatureuézl.s(see text Hence, the unit of measure for correct results neakK =K. Again, the unit of measure fdK is
K is »2/1.5 and for the ratevg/\/1.5. Horizontal solid lines show 3/1.5 and for the rat@g/\/1.5.
the globular limit valueR, for N=12 (upper ling and 16(lower
line). Dashed lines are the rates expected from the reduced activin the prefactor of Eqg(18) and(28), which in fact is found
tion energyA®<NUp at K<K, for N=12,16,32(from the top.  to enhance the rate by nearly one order of magnitude near
The arrows indicatd, for N=12,16. K=Kk.

Figure 6 shows our full analytical results for the rate in
(EnDERE N =8amé(t—t"), nm=12,...N. Sec. lll, in comparison with the simulation data fde= 16.
The rateR}, obtained by the second-order calculation of the
We integrate this equation using the Euler-Maruyamadfluctuation integral overestimates the rate ni€arK . by ex-
method with finite time intervalAt [24]. The random force aggerating the free-energy decrease at the barrier top due to
&,(1) at each time step is modeled by an independent Gausé&nhanced fluctuation of the chain. The r&eobtained after
ian random variable with zero mean and variangé the leading-order anharmonicity correction ®, shows
=1/At. The finiteness of time interval is not important when fairly good agreement with the simulation result and captures
it is much smaller than any macroscopic relaxation time. Weg€asonably well the gradual increase in the rate with decreas-
require ing K nearK,.
A remarkable feature of our simulation results is that the
y rate ismaximizedat a small value oK for eachN. The rate
At<R, of such an “optimized” barrier crossing decreases very
slowly with increasingN. In this parameter regime of weak
] ) ) ) ~_ coupling, it is found that interwell dislocation of the whole
where y/K is the single segment relaxation time, which is chain occurs via frequent individual crossing and recrossing
the shortest time scale of internal mode relaxation of theyf the peads across the barrier. This regime is beyond the
chain. The time and length scales of the problem are set bycope of analytical calculation of the present work. The turn-
choosing the potential parametersags=£?=1.5. We have  over of the rate occurs as a result of competition between the
been assuming unit mass for each bead. In this unit, weoherent motion of the chaifwhich favors largek) and the
choose y=1 and kgT=1. (For comparison, the barrier efficient dynamics achieved by reduced activation energy
height for a single bead i83£%/4=0.5625) At t=0, {X,} is  (which favors smalK).
in the homogeneous configuratisp= — ¢ in the left well of
the potentialU(x). Then, for each realization ¢k,(t)} dic-

tated by Eq(31), we record the time required for the chain to V. SUMMARY

enter the right well, specified by the conditiaq(t) > £/2, In this paper we have calculated the rate of thermally
for all n. The inverse of this time averaged ovdr (>1) activated escape of a linear chain out of a local minimum of
realizations is identified as the escape rRte an external bistable potential. We have identified the escape

Figure 5 shows the result fod=12,16,32, with varying process as a stochastic process occurring in the chain con-
K. The coil-to-stretch transition poilt= K is marked by an  figuration space and applied multidimensional Kramers rate
arrow forN=12 and 16. The solid lines show the globular theory to calculate the rate. Using the continuous model of
limit escape rateR, for N=12,16. R, for N=32 is too the chain, we found the stationary points of the chain energy
small and beyond the range of the figure. The dashed linefsinctional and calculated the free energy of fluctuation near
show the rate estimated by taking into account the decreagbese points using the functional integral formalism. The
of the activation energd ® for K<K_ (but not the fluctua- saddle point structure of the chain energy functional plays a
tion effect around the stationary stateshe seemingly large crucial role in determining the rate. For lare(N>N,) or
discrepancy between these estimates and the simulation remall coupling strengthK<K_.), the homogeneous saddle
sults comes from neglecting the fluctuation effect containegoint configuration changes to a “kink” configuration which
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corresponds to a stretched chain state at the barrier top. Thike sequential translocation or kink diffusion scheme, of

coil-to-stretch transition greatly lowers the activation energywhich a relevant description will be in terms of the effective

of the chain, and thus greatly enhances the escape rate ofr@action coordinate as in the polymer translocation through a

flexible chain compared to that of a rigid, globular one.  membrang10], or by direct application of kink nucleation
Calculation of the effect of chain fluctuation on the escapeand diffusion theory as ifil6].

rate is an important result of the present study. For a har- |n summary, conformational change and fluctuation of a

monic chain, fluctuation around the stationary configuratioryiexiple chain renormalizes the external barrier to signifi-

is al\_/vays more favored_ at the barrier thgn at the well, d.ue t%antly change the escape dynamics quantified by the rate.
confinement of the chain at the well. This effect results in angengification and calculation of various aspects of this
even lower free-energy barrier that the chain must surmounjeyipility-induced effect are the main subjects of this paper.
AF<A®, and is most prominent near the coil-to-stretch Apart from the possibility of direct application to biotechno-
transition pointN=N, or K=K. _ logical processes such as electrophoresis, the present study
Our calculation in Sec. Il shows that above the coil-to- yrgvides a valuable analytical model that enhances under-
stretch transition, a chain extended over the parabolic bar“esrtanding of interesting and relevant features of thermally ac-

range renormalizes the barrier Curvatlﬂ')% to a smaller tivated processes of a soft, Comp|ex system.
value. This comes from the extended nature of a stretched

chain sensing different points of the potential curve with
different curvatures, and leads to effectigéowdown of
chain dynamics at the barrier. This effect will strengthen for
a longer chain, and in a symmetric potential, the unstable We acknowledge support from the Korea Research Foun-
mode at the saddle point will eventually become a mode witldation (1999 made via POSTECH Institute of Polymer Re-
a vanishing eigenvalue. The escape dynamics then followsearch.
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